Interaction with the unfolded protein response reveals a role for stargazin in biosynthetic AMPA receptor transport.

نویسندگان

  • Wim Vandenberghe
  • Roger A Nicoll
  • David S Bredt
چکیده

The transmembrane protein stargazin enhances levels of functional AMPA receptors at the neuronal plasma membrane and at synapses. To clarify the mechanism for this effect, we studied trafficking of the AMPA receptor subunit glutamate receptor 1 (GluR1) in transfected COS7 cells. GluR1 expressed poorly on the surface of these cells and was primarily retained in the endoplasmic reticulum (ER). Stargazin expression strongly increased the surface fraction of GluR1. This effect was not reduced by a dominant-negative dynamin mutant, suggesting that stargazin does not inhibit AMPA receptor endocytosis. Interestingly, upregulation of ER chaperones as part of the unfolded protein response (UPR) both mimicked and occluded the effect of stargazin, suggesting a role for stargazin in ER processing of AMPA receptors. Consistent with this idea, we detected UPR induction in cerebellar granule cells lacking stargazin. Finally, residual AMPA receptor currents in stargazin-deficient neurons were suppressed by inhibition of the UPR. These findings uncover a role for stargazin in AMPA receptor trafficking through the early compartments of the biosynthetic pathway. Furthermore, they provide evidence for modulation of AMPA receptor trafficking by the UPR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TARP Phosphorylation Regulates Synaptic AMPA Receptors through Lipid Bilayers

Neurons use neurotransmitters to communicate across synapses, constructing neural circuits in the brain. AMPA-type glutamate receptors are the predominant excitatory neurotransmitter receptors mediating fast synaptic transmission. AMPA receptors localize at synapses by forming protein complexes with transmembrane AMPA receptor regulatory proteins (TARPs) and PSD-95-like membrane-associated guan...

متن کامل

Stargazin modulates native AMPA receptor functional properties by two distinct mechanisms.

AMPA receptors play a central role in basal excitatory synaptic transmission as well as synaptic maturation and plasticity. The transmembrane AMPA receptor regulatory protein (TARP) stargazin (gamma2) serves multiple roles in trafficking and stabilizing synaptic AMPA receptors and may be incorporated as an auxiliary subunit. We wanted to determine whether stargazin altered channel function of n...

متن کامل

Phosphorylation of the postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 binding site of stargazin regulates binding to PSD-95 and synaptic targeting of AMPA receptors.

Dynamic regulation of AMPA-type receptors at the synapse is proposed to play a critical role in alterations of the synaptic strength seen in cellular models of learning and memory such as long-term potentiation in the hippocampus. Stargazin, previously identified as an AMPA receptor (AMPAR)-interacting protein, is critical for surface expression and synaptic targeting of AMPARs. Stargazin inter...

متن کامل

Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors.

The AMPA-type glutamate receptors mediate the majority of the fast excitatory synaptic transmission and critically contribute to synaptic plasticity in the brain, hence the existence of numerous trafficking proteins dedicated to regulation of their synaptic delivery and turnover. Stargazin (also termed gamma2) is a member of a recently identified protein family termed transmembrane AMPA recepto...

متن کامل

The Interaction between Stargazin and PSD-95 Regulates AMPA Receptor Surface Trafficking

Accumulation of AMPA receptors at synapses is a fundamental feature of glutamatergic synaptic transmission. Stargazin, a member of the TARP family, is an AMPAR auxiliary subunit allowing interaction of the receptor with scaffold proteins of the postsynaptic density, such as PSD-95. How PSD-95 and Stargazin regulate AMPAR number in synaptic membranes remains elusive. We show, using single quantu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 5  شماره 

صفحات  -

تاریخ انتشار 2005